
High-level Programming Support

for Robust Pervasive Computing Applications

Wilfried Jouve

INRIA / LaBRI, France

wilfried.jouve@labri.fr

Julien Lancia

Thales / LaBRI, France

julien.lancia@labri.fr

Nicolas Palix

INRIA / LaBRI, France

nicolas.palix@labri.fr

Charles Consel

INRIA / LaBRI, France

charles.consel@labri.fr

Julia Lawall

DIKU, Denmark

julia@diku.dk

Abstract

In this paper, we present a domain-specific Interface

Definition Language (IDL) and its compiler, dedicated to

the development of pervasive computing applications. Our

IDL provides declarative support for concisely character-

izing a pervasive computing environment. This description

is (1) to be used by programmers as a high-level reference

to develop applications that coordinate entities of the target

environment and (2) to be passed to a compiler that gener-

ates a programming framework dedicated to the target envi-

ronment. This process enables verifications to be performed

prior to runtime on both the declared environment and a

given application. Furthermore, customized operations are

automatically generated to support the development of per-

vasive computing activities, such as service discovery and

session negotiation for stream-oriented devices.

1 Introduction

Pervasive computing environments introduce new chal-

lenges for application development, due to the heterogene-

ity and dynamicity of the devices involved. Currently,

middleware is a key enabling technology used to address

these challenges in developing pervasive computing appli-

cations. Middleware abstracts over a number of implemen-

tation issues, enabling distributed, heterogeneous objects to

interoperate. Most middleware approaches are furthermore

general-purpose and highly dynamic, thus providing the ex-

pressiveness and adaptability needed for pervasive comput-

ing applications.

The complexity of the pervasive computing domain,

however, implies that it is not sufficient to implement appli-

cations in an ad hoc manner; it is also necessary to be able to

reason about their behavior and verify domain-specific and

area-specific properties. Middleware uses generic mech-

anisms, such as strings, to describe the interaction be-

tween components. Such mechanisms are error prone (e.g.,

strings can be misspelled) and not checked until run time.

Many middleware approaches do provide some level of

customization via an Interface Definition Language (IDL),

such as OMG IDL, however, they do not permit domain-

specific properties to be checked or domain-specific pro-

gramming support to be generated. Thus, they do not ade-

quately ensure the robustness of applications. Furthermore,

pervasive computing development consists of common pro-

gram patterns that are only partially supported by the IDLs

of general-purpose middlewares, requiring the programmer

to provide code to further tailor the middleware to this

domain. In this case, the programmer lacks declarative

means to express these commonalities, limiting the sharing

of knowledge to code.

Our approach We introduce an IDL, named PerIDL,

with pervasive computing concepts built-in. In our ap-

proach, an area expert uses PerIDL to describe a perva-

sive computing area. This description forms a repository

of knowledge for programmers who need to develop appli-

cations in the area. It is furthermore passed to our com-

piler, PerGen, to automatically generate a software frame-

work that provides customized verifications and program-

ming support. Unique among existing IDLs, PerIDL pro-

vides native support not only for the command (e.g., RPCs)

and event iteraction modes, but also for stream-oriented en-

tities, via a complementary interaction mode called a ses-

sion. Sessions raise the level of abstraction of the imple-

mentation of stream-oriented interactions, as are widely re-

quired in many pervasive computing areas, and enhance the

quality of verifications and programming support that can

be provided for stream-based programming.

2 Defining a Pervasive Computing Area

Using PerIDL, an area expert describes a pervasive com-

puting area as a taxonomy of the relevant entities. Creating



such a taxonomy requires first analyzing the pervasive com-

puting area and then specifying the relevant entities and the

relationships between them.

2.1 Analyzing a pervasive computing area
The goal of the analysis of a pervasive computing area

is to identify the basic building blocks of the area and their

range of possible variations. The basic building blocks are

the relevant hardware (e.g., sensors, webcams) and soft-

ware entities (e.g., databases). Variations occur in both the

functionalities provided by these basic building blocks and

their non-functional properties. For example, at the level

of functionalities, there are simple webcams, zooming we-

bcams and webcams with a built-in motion detector. These

functional variations typically entail significant differences

in the implementation logic. Non-functional variations in-

clude properties such as location and orientation, which

may also impact how an entity is used. Finally, these ba-

sic building blocks are not in general sufficient to describe

all of the entities needed in a pervasive computing area; pro-

grammers also need to develop composite building blocks,

i.e., applications or managers, that coordinate the behaviors

of the more basic building blocks.

2.2 Specifying an area in PerIDL
Based on the results of the analysis, the area expert cre-

ates a PerIDL specification modelling the classes of enti-

ties relevant to the target area. We refer to a class of enti-

ties providing a particular set of functionalities as a service

class. The area expert describes a service class in terms

of the semantic properties characterizing the service class,

the interaction modes provided by the service class, and the

hierarchical relationships between service classes.

Semantic properties. The semantic properties of a ser-

vice class describe the range of entities it corresponds to,

in terms of the non-functional variations identified during

the analysis phase, e.g., the location of a motion detector or

the codec being used by a webcam. Fig. 1 depicts a number

of service classes, with their associated semantic properties

indicated by “P”. When an entity is deployed, it must be as-

sociated with a service class. To make this association, the

deployment code must initialize the values of each of the se-

mantic properties. Programmers that want to interact with

services can then write service discovery logic in terms of

the PerIDL description of the target environment, by select-

ing a service class and refining it with the desired values of

the semantic properties.

Interaction modes. The interaction modes associated with

a service class describe how the service produces or con-

sumes data. Service programmers must implement each

specified interaction mode. Our approach supports three in-

teraction modes: command, event and session.

Command. The command mode corresponds to an RPC,

typically to control a device (e.g., zoom for a webcam in

(a) Graphical representation

interface Webcam : Device {

attribute Framerate frame rate;

attribute VideoMode video mode;

SessionInput(Video video);

};

interface ZoomingWebcam :

Webcam {

attribute boolean isOptical;

void zoom(in Region region);

};

interface MotionDetectingWebcam :

ZoomingWebcam {

EventOutput(Motion motion);

};

(b) Textual representation

Fig. 1. The zooming and motion detecting webcam

Fig. 1).

Event. The event mode is analogous to the push-oriented

event mechanism offered by most middleware approaches.

It allows services to be aware of and react to conditions in

their environment. A service class for webcams featuring

motion detection could be modeled as a publisher of a mo-

tion event, as shown in Fig. 1 by the declaration Event-

Output{Motion}. An event declaration indicates both the

event type (e.g., Motion) and the event direction, whether

incoming (EventInput) or outgoing (EventOutput).

Session. The session mode natively supports entities that

exchange a stream of data. The main difficulty in managing

a stream is the variety of possible data formats. Our ap-

proach consists of: (1) a setup phase, in which a consumer

and a producer agree on data stream parameters; then, (2) a

session creation phase, in which a session of data exchange

is created and configured with respect to the negotiated pa-

rameters.

The declaration SessionInput{Video} in the definition

of the service class Webcam (Fig. 1) indicates that this class

of devices can accept requests to create a stream. This dec-

laration defines the type of the stream items (here Video)

and the session initiation capabilities – input for invitee and

output for initiator. Furthermore, it specifies the negotiation

parameters (not shown).

Hierarchical relationships. The PerIDL description of

a pervasive computing environment is structured as a hi-

erarchy, as illustrated by the specification of the building

surveillance area in Fig. 2. Starting at the root node, this

description breaks down the set of possible entities of this

area into increasingly specific classes. Each successive en-

try adds new semantic properties and interaction modes that

are specific to the service class that it represents. A service

class furthermore inherits all the semantic properties and in-

teraction modes of its ancestors.

In our approach, inheritance not only enables reuse and

makes explicit the relationships between entities, but it also

plays a decisive role in service discovery. Conceptually, a

user who wants access to a service class designates the cor-

responding node in the service hierarchy, and receives all of

the services corresponding to the service classes contained

in the subtree. Code that uses a service class should choose



Fig. 2. Excerpt of the building surveillance area

the least detailed class of services that meets its needs. In

this way, (1) a service discovery request is more likely to be

successful and to return a larger number of entities; (2) the

resulting application only exposes the functionalities it re-

quires, thus improving its portability, and making it forward

compatible with future or refined versions of the requested

service class.

3 Developing Services for an Area

To develop a new service in our approach, the program-

mer first determines the service class it should belong to.

The declarations of the selected service class then provide

a domain-specific design framework for implementing all

facets of the service, ranging from its operations to its de-

ployment. This design framework is supported by a soft-

ware framework that is automatically generated from the

PerIDL specification by the compiler PerGen.

3.1 Definition of services
To create a service, the programmer extends the ab-

stract class generated from the corresponding PerIDL ser-

vice class. The skeleton of such an extension can be auto-

matically generated by an IDE such as Eclipse (e.g., Fig. 3).

We now describe the subsequent programming process.

Interaction modes. The interaction modes are represented

by the methods and abstract methods of the abstract class.

As examples, we use the implementation of a Motion-

DetectingWebcam service (Fig. 3) and a MotionDetection-

Manager service that uses such a webcam (Fig. 4).

1 public class MyWebcam extends MotionDetectingWebcam {

3 public MyWebcam(String uri) {

4 super(uri);

5 // TODO Auto-generated constructor stub

6 }

7 public VideoSession connect(IVideoSessionOutput service) {

8 // TODO Auto-generated method stub

9 return null;

10 }

11 public void disconnect(VideoSession activeSession) {

12 // TODO Auto-generated method stub

13 }

14 public void zoom(Region region) {

15 // TODO Auto-generated method stub

16 }

17 public Autonomy getAutonomy() {

18 // TODO Auto-generated method stub

19 return null;

20 }

21 public void shutdown() {

22 // TODO Auto-generated method stub

23 }

24 }

Fig. 3. The MyWebcam class skeleton

Command. Commands are represented by abstract meth-

ods in the abstract class. As shown on lines 14 to 23 of

Fig. 3, for a motion detecting webcam, these methods are

zoom, getAutonomy, and shutdown, declared respectively by

the PerIDL nodes for ZoomingWebcam, Device, and Service

(Fig. 1(a)).

1 public class HallMotionDetectionManager

extends MotionDetectionManager {

2 private MotionDetectingWebcam myWebcam;

3 [...]

4 public HallMotionDetectionManager(String uri) {

5 super(uri);

6 MotionDetectingWebcamPart part =

MotionDetectingWebcam.getPartition();

7 part.location.setValue(hall);

8 myWebcam = MotionDetectingWebcam.getService(part);

9 myWebcam.subscribe(this);

10 }

11 public void receive(MotionEvent event) {

12 Region region = event.getValue().getRegion();

13 Display myDisplay;

14 [...]

15 myWebcam.zoom(region);

16 VideoSession webcamSession = myWebcam.connect(this);

17 VideoSession displaySession = myDisplay.connect(this);

18 bridge = bind(webcamSession, displaySession);

19 [...]

20 }

21 [...]

22 }

Fig. 4. The hall motion detection manager

Event. For a PerIDL specification that provides an event in-

teraction mode, the corresponding abstract class defines a

concrete publish method for each declared type of output

event. Services implementing an EventOutput interaction

mode invoke these publish methods to publish the corre-

sponding event. In our webcam example, the only output

event is a motion event. Consequently, the service publishes

an event whenever motion is detected. This event will be

received via an event channel by all services that have sub-

scribed to it.

For a PerIDL specification that provides an event inter-

action mode, the corresponding abstract class also defines

a receive abstract method for each declared type of in-

put event. A service may subscribe to events from various

sources (e.g., line 9 in Fig. 4. For each type of event, it must

define an appropriate receive method (e.g., line 11-20 in

Fig. 4.

Session. The code relevant to a session is similar to that

of an event: services declared as session invitee lead to the

creation of the connect and disconnect abstract methods

in the corresponding abstract classes. These methods are

invoked by service classes declared as session initiator to

receive a stream of data.

Services in service classes declaring session binder use

the generated concrete bind method to establish a session

between two services that have session capabilities. In

our example, the MotionDetectingWebcam and Display ser-

vices are invitees and the MotionDetectionManager service

is a session binder. Thus, the hall motion detection man-

ager can establish a session between the MotionDetecting-

Webcam service and the Display service (lines 16–18 of

Fig. 4).

Semantic properties. The programmer must initialize the

values of the semantic properties in the constructor of the



service. In doing so, the service is characterized, enabling

other services to discover it.

3.2 Service discovery
The software framework that is generated from a PerIDL

specification provides the programmer with methods to se-

lect any node of this specification. The result of this selec-

tion is a set of all services corresponding to the selected

node and its subnodes, which we refer to as a partition.

From a partition, the programmer can further narrow down

the service discovery process by specifying the desired val-

ues of the semantic properties. Eventually, the method

getServices or getService is invoked to obtain a list of

matching services or one service chosen at random from

this list, respectively.

4 The PerGen compiler

The goals of the PerGen compiler are to verify the

PerIDL specification and to generate code that supports rel-

evant pervasive computing operations.

Area-specific framework. From a PerIDL specification,

PerGen performs verifications that ensure consistency prop-

erties and generates code supporting basic pervasive com-

puting operations. Our approach is built on a static model,

in which an expert in the area provides a complete taxon-

omy of the service classes relevant to the target area. This

area can still evolve and new PerIDL declarations can be

added to an environment specification, leading to the gen-

eration of a new framework. PerGen then checks that the

event and session declarations in this taxonomy are consis-

tent.

Service registration. To provide dynamicity, existing mid-

dleware service discovery manipulates component types

and property names as strings. This approach, however, is

error-prone, and errors such as misspellings are not detected

until runtime. PerGen generates typed methods and classes

for service registration and discovery, enabling compile-

time verification of the use of these operations. To ensure

that all deployed services are registered, service registration

is automatically invoked in the constructor of the abstract

class.

Service discovery. The generic nature of service discovery

in existing middlewares prevents any verification at compile

time. In contrast, we introduce a two-step service discov-

ery process: (i) selecting a node in the hierarchy of service

classes and (ii) refining this selection by setting values of

the semantic properties. In the latter case, the generated

methods check any constraints on the required values of the

semantic properties. Two methods are generated to com-

plete the discovery process: one to select a single service

from a refined partition (see lines 8 in Fig. 4), and another

to get all the services of a refined partition. Service discov-

ery produces a typed reference to the discovered services.

Interaction modes. The safety of a pervasive computing

application critically relies on how services are composed.

PerGen carries out three key verifications that exploit the

PerIDL declarations: direction of interaction mode (i.e., a

supplier must only interact with a consumer), connectivity

of services (i.e., there should not be dangling suppliers or

consumers), and typed service interaction (i.e., a supplier

and a consumer should have a strongly typed interaction).

5 Related Work

The genericity of standardized middlewares can be a bur-

den when it comes to address requirements from a particu-

lar domain. To address this issue, several approaches pro-

pose to specialize or configure a middleware implementa-

tion to fulfill requirements from a particular domain [1, 4].

IDLs have been successfully used to facilitate the develop-

ment of distributed systems [2]. However, none of these ap-

proaches, as far as we know, use specifications to generate a

customized programming framework, to facilitate program

development in the domain of pervasive computing. Finally,

numerous programming frameworks and toolkits have been

proposed [3, 5]. These approaches focus on the rapid pro-

totyping of pervasive applications without ensuring the va-

lidity of the design prior to runtime.

6 Conclusion

In this paper, we have presented PerIDL and PerGen,

language-based tools to improve the robustness of perva-

sive computing applications. PerIDL allows an area expert

to provide a high level description of the entities in a per-

vasive computing area, and PerGen generates programming

support specific to the area that amenable to static verifica-

tion. PerGen is implemented and has been successfully used

to specify three areas of pervasive computing (i.e., home au-

tomation, telephony, building surveillance). Furthermore,

applications within these areas are being developed.

References

[1] S. Apel and K. Bohm. Towards the development of ubiquitous

middleware product lines. In ASE’04 SEM Workshop, 2004.
[2] C. Becker and K. Geihs. Generic QoS-support for CORBA.

In ISCC ’00, 2000.
[3] A. Dey, D. Salber, and G. Abowd. A conceptual framework

and a toolkit for supporting the rapid prototyping of context-

aware applications. In Human-Computer Interaction, 2001.
[4] W. Jouve, N. Ibrahim, L. Réveillère, F. Le Mouël, and C. Con-

sel. Building home monitoring applications: From design to

implementation into the Amigo middleware. In ICPCA’07,

2007.
[5] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Camp-

bell, and M. D. Mickunas. Olympus: A high-level program-

ming model for pervasive computing environments. In PER-

COM’05, 2005.


